当前位置: 首页 > 网络 > 正文

超级材料 可获得具有高静电容量

作者:admin 发布时间:2023-11-08 18:20:28 分类:网络 浏览:107


  (国家知识产权局专利局专利审查协作湖北中心,武汉 430070)

  摘 要:本文主要对超级电容器领域的相关专利申请的分析进行了梳理,并进行了举例说明。超级电容电极材料主要包括碳材料、金属氧化物材料、导电聚合物材料以及复合材料,本文主要介绍了碳材料在超级电容器领域的应用,并具体从活性炭、碳纤维、碳气凝胶、碳纳米管、石墨五个分支分别介绍了超级电容器。

  关键词:超级电容器;碳材料;活性炭;碳纤维;碳气凝胶;碳纳米管;石墨;专利申请

  1 不同电极材料在超级电容器上的研究与应用

  1.1 碳材料

  碳材料是最早被用作电极材料的,碳材料电极先后出现了多孔碳材料、活性炭材料、纳米碳纤维、碳纳米管等多种材料。碳材料的特征主要表现为双电层特性,双电层电容器充电时在电极/溶液界面通过电子和离子或偶极子的定向排列产生双电层电容储能,其电荷及电位分布如图1(a)所述。加上直流电压后,经过一段时间在2个极化电极与电解液的界面上就会形成新的双电层,其电荷与电位分布如图1(b)所示。充电时通过外部电源,电子从正极转移到负极,同时,溶液中的正负离子各自反向扩散到电极表面,能量以电荷形式存储在电极材料与界面之间。由于电极电荷和溶液中反电离子的相互作用,离子不会迁移到溶液中去,保证双电层的稳定。

  目前已经公开的有关碳基材的超级电容的申请有2560篇,其中多孔碳因具有较高的比表面积和孔隙率,且相对于碳纳米管、石墨烯等具有成本低廉、原料丰富、适合大规模生产等优点依然是超级电容器的热门电极材料。何孝军等人采用花生壳为原料、KOH为活化剂,所得多孔炭材料作为超级电容器电极材料表现出较好的稳定性(CN102417178)。而且,作为多孔碳的一种,活性炭作为超级电容的电极材料有着更进一步的优势,将具有1600cm2/g特定表面的活性碳细微粒子放入模具,不使用任何粘结剂,施加300kg/cm2的压强,分别供给一个90秒钟的750A的离子脉冲电流和一个120秒钟的1000A的热电流,从而产生一个薄圆盘形的细微碳粒子的多孔烧结体,即得到活性炭电极(JPH0378221 A五十铃汽车有限公司)。然而,活性碳系列的材料导电性较差,所得电容器等效串联电阻大。而且该活 性碳系列的比表面积实际利用率不超过30%,电解质离子难以进入,因此不 适于用作超级电容器的电极材料。碳纳米管(Carbon Nanotube,CNT)的出现为超级电容器的开发提供了新的机遇,它具有良好的导电性能且本身的比表面积大,制得的超级电容器 具有较高的比电容量和电导率。(CN101425380清华大学)

  然而,无论怎样,以碳材料作为电极材料虽然有诸多优点,但是由于其只利用双电层储存能量,在性能方面有所限制,因此出现了金属氧化物材料的电极开发与研究。

  1.2 金属氧化物材料

  法拉第赝电容电极材料的研究主要集中在金属氧化物上,比如氧化钌,氧化镍,二氧化锰等。他们不同于双电层电容器中碳材料电极那样存储能量,而是在电容器进行充放电时,金属氧化物与溶液的界面处发生可逆氧化还原反应,从而获得更大的比容量。目前世界范围内关于金属氧化物材料的超级电容的专利申请量为413篇。刚开始研究的电极材料是氧化钌材料,然而,由于钌金属属于贵金属材料,虽然其拥有良好的效果,由于价格昂贵,很大的程度上制约了钌金属电极材料的应用。所以,后来人们开始将目光转向其他的廉价金属以替代氧化钌,或者利用碳材料或其他金属化合物与其进行复合,在提高电极材料的同时,减少氧化钌的用量从而降低超级电容器的制造成本。比如,以二氧化锰作为电极材料,形成超级电容器(JP3935814 夏普公司),由于MnO2在充放电过程中发生了可逆的氧化还原反应,其比电容远高于活性炭电极的比电容。

  1.3 导电聚合物材料

  导电聚合物超级电容器与金属氧化物电容器同属于赝电容型超级电容器,因其良好的固有导电率和高能量密度,同时又有相较于金属氧化物更低成本的特征,成为了一种常用的电极材料。距今为止,有关导电聚合物电极材料的专利有250篇。导电聚合物超级电容器的最大优点就是能够在较高的电压下进行工作,克服金属氧化物超级电容器工作电压不高的问题。对阴极基材表面进行化学蚀刻,如涂覆腐蚀性物质或实施电化学蚀刻等,然后涂覆导电聚合物涂层,所述导电涂层包含烷基取代聚(3,4-乙烯二氧噻吩),采用这种聚合物,得到比许多传统涂层材料更高的电容(CN103310985 AVX公司)。通过使用规定的导电性高分子结合于表面,并且具有规定的直径的细孔容积为特定的比率的多孔质碳材料作为电极材料,循环特性优异的双电层电容器。所述电性高分子为选自聚苯胺、聚吡咯、聚吡啶、聚喹啉、聚噻唑、聚喹喔啉以及它们的衍生物中的至少1种(WO2012050104 横滨橡胶株式会社)。

  1.4 复合材料

  为了进一步增大超级电容器的能量存储,使其具有赝电容性能以及双电层特性,单一材料作为电极材料不再满足人们的需求。制备利用碳材料作为基体的复合材料不仅增加了活性材料的有效利用,也增加了复合材料的导电率以及机械强度,现今,已有大量的文献和专利对碳材料作为基体来改善复合材料的电化学性能进行了研究,仅涉及复合材料的专利申请量就达到了355篇。例如,通过使氧化钌和特定的碳材料复合化,可以使氧化钌的比表面积和电极物质的空间这两者扩大,从而通过纳米复合化来实现电荷利用率的提高(CN1964917B 国立大学法人东京农工大学)。因此,未来对于超极电容器复合电极材料的研究可能会吸引越来越多的目光。

  2 碳电极材料在超级电容器上的研究与应用

  理论上,电极材料的比表面积越大,容量越大,越适合作为电容器电极材料。实际上,研究发现,高比表面积的碳材料的实际利用率并不高,因为碳材料的孔径分为微孔(<20nm)、中孔(2-50nm)、大孔(>50nm),其中对于形成双电层有利可以作为超级电容器电极的只有大于20nm孔径的材料,因此在提高比表面积的同时还要同时调控孔径的分布。目前,已有多种不同类型的碳材料应用于超级电容器电极材料上,关于碳电极材料的相关专利申请主要集中在活性炭、碳纤维、碳气凝胶、碳纳米管、石墨五个方面。如图2所示,不同的碳电极材料有不同的特征。

  2.1 活性炭

  活性炭是一种由无定形碳和石墨微晶组成的多孔材料,一般在多孔碳的比表面积大于500m2/g时被称为活性炭。由于活性炭的微孔而具有大的比表面积,因此,通常使用包含活性炭的电极材料用作超级电容器的电极,使其表面与电解质接触(KR20100011228 LS美创有限公司)。然而活性炭的导电性不强,因此在利用活性炭制得电极时,可以对普通活性炭进行化学改性,使之具有良好的导电性、较高的表观密度和高比容量,并加入乙炔黑等导电剂以增强活性炭电极的导电性(CN1419256 A成都茵地乐电源科技有限公司)。

  而且,活性炭的来源十分广泛,作为超级电容器的关键材料直接影响到超级电容器的性能。目前,常用的活性炭的制备原材料主要来自石油基原料、植物、甚至污泥等,例如,以甘蔗渣(例如冲绳产或其它的来源)获得的原料经碳化获得碳化物,将碳化物进行碱活性化得到活性炭(CN101503189 产业技术研究所股份有限公司);以小麦面粉、玉米面等为原料制备超级电容器用活性炭(US8318356B2 康宁股份有限公司);利用低密度农业废弃物,通过二氧化碳或者水蒸气活化从而制备活性炭(US6537947B1 迪尔公司)。因此,活性炭的来源广,成本低,也是其一直备受青睐的重要原因。

  2.2 碳纤维

  碳纤维属于高效吸附性材料,由于其表面碳原子的不饱和性,它可以以化学形式结合其他原子和原子团,因此碳纤维具有更由于活性炭的吸附性能。利用高密度的高导电性碳纤维作为负极活性物质,所制得的超级电容器的库仑效率将提高90%或者更高(JP2811389B2 B2 日本电池株式会社)。通过添加细微碳纤维来改善充放电容量、改善电极极板强度,这里提到的细微碳纤维,一般是利用烃的热分解气相法制造的(JPH5-321039 昭和电工株式会社),这种碳纤维的直径通常为0.01-5um。然而,为了提高电池或电容的充放电容量,以提高负极材料的结晶性来提高容量时,不仅仅是负极材料,进而对添加材料也要求具有放电容量高的材料。因此,对于其添加材料的碳材料,提高其结晶性并获得导电性好的细微碳纤维是十分有必要的(CN1343269 A昭和电工株式会社)。现在,关于碳纤维作为超级电容器电极领域的研究仍然吸引着众多学者的关注,有关的专利申请量为157篇。

  2.3 碳气凝胶

  碳气凝胶是由美国人Pekala首先发现的一种新型纳米多孔材料,一经出现立刻引起各国研究工作者的浓厚兴趣。通过调整碳气凝胶的孔隙大小,其具有更优良的导电性(JP2011159960 三星电机株式会社)。另外,由于经过溶胶-凝胶化反应得到的碳气凝胶材料一般呈块状,这时需要把块状气凝胶球磨成微米级粉末(~10μm),不仅费时费力,还费钱。因此出现了一种直接制得粉末状碳气凝胶的制备方法,可以满足应用多样化的需求(CN103449406 A 中山大学)。但是,现阶段制备碳气凝胶的工艺较为复杂,在制备碳气凝胶的前驱体时通常采用超临界干燥技术,该方法成本高,过程复杂,生产周期长,规模化生产难度大,并且具有一定的危险性,因此各国的研究者都在探索常压干燥代替超临界干燥的制备工艺。

  2.4 碳纳米管

  自1991年日本NEC公司的Iijima发现碳纳米管(Carbon Nanotube,CNT)以来,其具有的优良的机械和光电性能,被认为是复合材料的理想添加物。纳米管可以看做是石墨烯片层卷曲而成,因此,按照石墨烯片的层数,碳纳米管材料可分为单壁碳纳米管和多壁碳纳米管。为了获得更高的电容量,将碳纳米管与一结合剂混合,模制成一平板价型,制得电极,其中碳纳米管可以是单壁或者多壁碳纳米管(CN1317809株式会社日进纳米技术)。将碳纳米管将单壁碳纳米管与甲醇溶液混合搅拌制得单壁碳纳米管的分散液,将此分散液在减压气氛中通过PTFE滤纸得到一纸膜压单壁碳纳米管片材,将该片材放置于刻蚀铝箔的表面,然后设置隔膜等,制得超级电容器(US2010259867 A1 日本化工株式会社)。以多壁碳纳米管为原料,与浓硫酸和浓硝酸混合加热,获得预氧化的碳纳米管,清洗后与插层剂混合烘干后二次加热,膨胀后得到石墨烯纳米带,活化处理后得到多孔石墨烯纳米带制备超级电容器(CN103332689中国科学院宁波材料技术与工程研究所)。或者将单层碳纳米管与多层碳纳米管混合,与粘结剂作用制得电极材料(JP2008010681 A爱考斯研究株式会社)。

  2.5 石墨

  单层石墨材料作为新型的超级电容器的电极材料,是利用其二维结构,具有极大的比表面积,低比重,单片片层厚度在0.34nm~2nm之间分布,表面的官能团存在使单层石墨材料与电解液充分润湿。与传统的活性炭作为电极材料的超级电容器相比节省能源;与碳纳米管

  作为电极材料的超级电容器相比,成本低廉。新型的超级电容器性能

  良好,具有很高的比电容及高的能量密度(可达50Whkg-1),其比功率更可高达40kWkg-1(CN101383231 南开大学)。

  3 总结

  综上所述,除了进一步提高现有体系的性能外,今后超级电容器用碳电极材料仍然是通过对其储能机理与制备方式的研究与开发,寻找更为理想的超级电容器电极材料,为提高超级电容器的功率密度和能量密度制造出新型的商业化储能器件。而且,就生产成本来说,碳材料毋庸置疑是目前为止的超级电容器电极材料中最为廉价的电极材料,对于众多产业和公司而言有着极大的吸引力,对于此类材料的研究将一直是人们的重点。

  作者简介:蔡婷婷(1989-),女,硕士,初级职称,研究方向:电阻电容领域-专利审查。


标签:材料电极电容器


相关推荐

最新推荐

关灯