当前位置: 首页 > 网络 > 正文

根号 我们今天刚刚学根号和算术平方根

作者:admin 发布时间:2023-04-08 19:42:26 分类:网络 浏览:95


  我们今天刚刚学根号和算术平方根,我就不明白根号的是什么意思~!比如 根号36的值是多少??但是又有一些题问根号36的算术平方根是多少,其实到底是什么意思??

  一般来说,根号多少,就是求这个数的算术平方根

  根号36=6开平方:比如36的平方根那就应该是:正负6

  36的算术平方根就是:正6

  如果只是根号a:那就表示要求你求这个数的算术平方根,只是正根

  如果问的是开平方:那就表示要求你求这个数的平方根,也就是正负两个

  根号是一个数学符号。根号是用来表示对一个数或一个代数式进行开方运算的符号。若a?=b,那么a是b开n次方的n次方根或a是b的1/n次方。开n次方手写体和印刷体用表示,被开方的数或代数式写在符号左方√ ̄的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界。

  扩展资料:

  根号的书写在印刷体和手写体是一模一样的,这里只介绍手写体的书写规范。

  1、写根号:

  先在格子中间画向右上角的短斜线,然后笔画不断画右下中斜线,同样笔画不断画右上长斜线再在格子接近上方的地方根据自己的需要画一条长度适中的横线,不够再补足。(这里只重点介绍笔顺和写法,可以根据印刷体参考本条模仿写即可,不硬性要求)

  2、写被开方的数或式子:

  被开方的数或代数式写在符号左方v形部分的右边和符号上方一横部分的下方共同包围的区域中,而且不能出界,若被开方的数或代数式过长,则上方一横必须延长确保覆盖下方的被开方数或代数式。

  3、写开方数或者式子:

  开n次方的n写在符号√ ̄的左边,n=2(平方根)时n可以忽略不写,但若是立方根(三次方根)、四次方根等,是必须书写。在实数范围内,

  (1)偶次根号下不能为负数,其运算结果也不为负。

  (2)奇次根号下可以为负数。

  不限于实数,即考虑虚数时,偶次根号下可以为负数,利用【i=√-1】即可

  参考资料:搜狗百科——根号

  根号36是36的算术平方根=6

  根号36的算术平方根即是6的平方根=正负根号6。

  一般来说,根号多少,就是求这个数的算术平方根

  根号36=6

  开平方:比如36的平方根那就应该是:正负6

  36的算术平方根就是:正6

  如果只是根号a:那就表示要求你求这个数的算术平方根,只是正根

  如果问的是开平方:那就表示要求你求这个数的平方根,也就是正负两个

  简单的说就是开方.

  一个数的算术方根,得数必为正数,且根号内为非负数。

  十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求 的平方根,就写作 ,如果想求 的立方根,则写作 。”

  这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。

  现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用表示。以后,诸如 等等形式的根号渐渐使用开来。

  由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的。

  其实楼上是从代数的角度说的,如果你还在上初中的话,建议你从几何角度理解:一个正方形面积为四,求它的边长是多少,这个过程就进行了一次根号运算。

  根号的由来

  现在,我们都习以为常地使用根号(如 等等),并感到它使用起来既简明又方便。那么,根号是怎样产生和演变成现在这种样子的呢?

  古时候,埃及人用记号“┌”表示平方根。印度人在开平方时,在被开方数的前面写上ka。阿拉伯人用 表示 。1840年前后,德国人用一个点“.”来表示平方根,两点“..”表示4次方根,三个点“...”表示立方根,比如,.3、..3、...3就分别表示3的平方根、4次方根、立方根。到十六世纪初,可能是书写快的缘故,小点上带了一条细长的尾巴,变成“ ”。1525年,路多尔夫在他的代数著作中,首先采用了根号,比如他写 4是2, 9是3,并用 8, 8表示 , 。但是这种写法未得到普遍的认可与采纳。

  与此同时,有人采用“根”字的拉丁文radix中第一个字母的大写R来表示开方运算,并且后面跟着拉丁文“平方”一字的第一个字母q,或“立方”的第一个字母c,来表示开的是多少次方。例如,现在的 ,当时有人写成R.q.4352。现在的 ,用数学家邦别利(1526—1572年)的符号可以写成R.c.?7p.R.q.14╜,其中“?╜”相当于今天用的括号,P相当于今天用的加号(那时候,连加减号“+”“-”还没有通用)。

  直到十七世纪,法国数学家笛卡尔(1596—1650年)第一个使用了现今用的根号“ ”。在一本书中,笛卡尔写道:“如果想求 的平方根,就写作 ,如果想求 的立方根,则写作 。”

  这是出于什么考虑呢?有时候被开方数的项数较多,为了避免混淆,笛卡尔就用一条横线把这几项连起来,前面放上根号√(不过,它比路多尔夫的根号多了一个小钩)就为现在的根号形式。

  现在的立方根符号出现得很晚,一直到十八世纪,才在一书中看到符号 的使用,比如25的立方根用表示。以后,诸如 等等形式的根号渐渐使用开来。

  由此可见,一种符号的普遍采用是多么地艰难,它是人们在悠久的岁月中,经过不断改良、选择和淘汰的结果,它是数家们集体智慧的结晶,而不是某一个人凭空臆造出来的,不是从天上掉下来的。

  实数是什么?

  初中的时候,我们就学过实数的定义:有理数和无理数统称为实数。呵呵,事实上,可完全没有这么简单。事实上,从人类第一次发现无理数的存在到真正弄清楚什么是实数,中间过去了2000多年,那已经是19世纪末了,数学家意识到必须为微积分奠定一个坚实的逻辑起点了。这个逻辑上的起点就是关于实数的一些基本定理,这些定理第一次准确界定了实数的内涵。

  在那之前很久,数学家们已经通晓了极限的运算,极限运算是微积分的基础,但是从来没有人去说明过极限运算是可行的,或者说在怎样一个范围内极限运算是可行的。举一个例子,在整数范围内乘法运算总是可以的,因为运算结果一定是整数,但除法运算就不可以了,如果你要讨论除法运算,你就必须在整个有理数的范围内进行。但在有理数的范围内,开方运算也是不行的,要进行开方运算,你必须在代数数的范围内。

  那么,数学家和其它科学家已经广泛使用微积分的时候,自然有人会问,我们是在那个数集上进行极限运算的呢?会不会发生什么混乱呢?当然,人们愿意仍然把这个数集称为实数集,但现在的问题是,实数集里面应该有些什么,使得极限运算可以安全的进行?一般来说,人们会假定由所有小数组成的数集就是实数集。但会不会有用这些小数也表示不了的实数呢?

  最后,柯西第一次解决了这个问题,用完备性公理作出了实数集和的明确的定义。他的做法是,作出所有的有理数的数列,然后把所有收敛的数列按极限相同的等价关系进行分类,最后把这些所有的类的集合定义为实数集(有理数集同构于它的一个子集,因此它确实是有理数集的一个扩充)。柯西论证了这个集合上进行极限运算是可以的,这就是实数集的完备性。

  后来,戴德金用分割给出了实数完备性的另一个等价定义,并且证明了无限小数(把有限小数做成后面是9的循环小数)的集合满足完备性公理,因此说明了无限小数的集合就是实数集合。

  至此,科学家们才松了一口气,继续放心的使用微积分


标签:平方根表示实数


相关推荐

最新推荐

关灯