当前位置: 首页 > 科学 > 正文

八年级上册数学复习提纲 初二是数学学习的分水岭,很多孩

作者:admin 发布时间:2023-04-04 07:06:54 分类:科学 浏览:105


  初二是数学学习的分水岭,很多孩子学习数学都会感到随着年级的升高越来越困难,这当然和孩子的智能倾向有关,但也和学习方法、思考问题方式、学习习惯有关。的小编精心为您带来了八年级上册数学复习提纲【4篇】,希望大家可以喜欢并分享出去。

  八年级上册期末数学复习提纲 篇一

  1、多边形的分类:

  2、平行四边形、菱形、矩形、正方形、等腰梯形的定义、性质、判别:

  (1)平行四边形:两组对边分别平行的四边形叫做平行四边形。平行四边形的对边平行且相等;对角相等,邻角互补;对角线互相平分。两条对角线互相平分的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

  (2)菱形:一组邻边相等的平行四边形叫做菱形。菱形的四条边都相等;对角线互相垂直平分,每一条对角线平分一组对角。四条边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形;一组邻边相等的平行四边形是菱形;对角线互相平分且垂直的四边形是菱形。菱形的面积等于两条对角线乘积的一半(面积计算,即S菱形=L1_L2/2)。

  (3)矩形:有一个内角是直角的平行四边形叫做矩形。矩形的对角线相等;四个角都是直角。对角线相等的平行四边形是矩形;有一个角是直角的平行四边形是矩形。直角三角形斜边上的中线等于斜边长的一半;在直角三角形中30°所对的直角边是斜边的一半。

  (4)正方形:一组邻边相等的矩形叫做正方形。正方形具有平行四边形、菱形、矩形的一切性质。

  (5)等腰梯形同一底上的两个内角相等,对角线相等。同一底上的两个内角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;对角互补的梯形是等腰梯形。

  (6)三角形中位线:连接三角形相连两边重点的线段。性质:平行且等于第三边的一半

  3、多边形的内角和公式:(n-2)_180°;多边形的外角和都等于。

  4、中心对称图形:在平面内,一个图形绕某个点旋转,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

  八年级数学学习方法 篇二

  转变观念

  在初中,特别是初中三年级,老师会进行大量的练习,学生自己也会查阅大量的信息,从而使他们的数学成绩得到显著的提高。这种学习方式是被动学习,也称为题词策略,学生简单地接受数学知识,而初中数学知识相对简单,学生很快就能掌握知识。

  然而,高中毕业后,可以通过题词策略提高对数学知识的掌握,但由于这些知识不能表述的原因,相关知识无法创新。因此,高中数学学习不仅可以简单地通过问题来掌握知识,而且可以做到这一点。这样,学生就需要在教师的指导下,主动探索知识的内涵,拓展数学知识。通过类比达到。为了做到这一点,学生们自己需要更积极地学习,这样他们才能在数学中找到更多的乐趣。

  初二数学复习提纲 篇三

  1、一次函数

  我们称数值变化的量为变量(variable)。

  有些量的数值是始终不变的,我们称它们为常量(constant)。

  在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们说x是自变量(independent variable),y是x的函数(function)。

  如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值。

  形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional function),其中k叫做比例系数。

  形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数(linear function)。正比例函数是一种特殊的一次函数。

  当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

  每个二元一次方程组都对应两个一次函数,于是也对应两条直线。从“形”的角度看,解方程组相当于确定两条直线交点的坐标。

  2、数据的描述

  我们称落在不同小组中的数据个数为该组的频数(frequency),频数与数据总数的比为频率。

  常见的统计图:条形图(bar graph)(复合条形图)、扇形图(pie chart)、折线图、直方图(histogram)。

  条形图:描述各组数据的个数。

  复合条形图:不仅可以看出数据的情况,而且还可以对它们进行比较。

  扇形图:描述各组频数的大小在总数中所占的百分比。

  折线图:描述数据的变化趋势。

  直方图:能够显示各组频数分布的情况;易于显示各组之间频数的差别。

  在频数分布(frequency distribution)表中:我们把分成组的个数称为组数,每一组两个端点的差称为组距。

  求出各个小组两个端点的平均数,这些平均数称为组中值。

  3、全等三角形

  能够完全重合的两个图形叫做全等形(congruent figures)。

  能够完全重合的两个三角形叫做全等三角形(congruent triangles)。

  全等三角形的性质:全等三角形对应边相等;全等三角形对应角相等。

  全等三角形全等的条件:三边对应相等的两个三角形全等。(SSS)

  两边和它们的夹角对应相等的两个三角形全等。(SAS)

  两角和它们的夹边对应相等的两个三角形全等。(ASA)

  两个角和其中一个角的对边对应相等的两个三角形全等。(AAS)

  角平分线的性质:角平分线上的点到角的两边的距离相等。

  到角两边的距离相等的点在角的平分线上。

  4、轴对称

  经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(perpendicular bisector)。

  轴对称图形的对称轴,是任何一对对应点所连接线段的垂直平分线。

  线段垂直平分线上的点与这条线段两个端点的距离相等。

  由一个平面图形得到它的轴对称图形叫做轴对称变换。

  八年级上册数学复习提纲 篇四

  位置与坐标

  用坐标表示地理位置

  【用坐标表示地理位置】

  ① 建立坐标系,选择一个适当的参照点为原点,确定 x 轴、 y 轴的正方向;

  ② 根据具体问题确定单位长度;

  ③ 在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。

  【用坐标表示平移】

  1、平移:把一个图形整体沿某一方向移动一定的距离, 图形的这种移动,叫做平移。平移后图形的位置改变,形状、大小不变。

  2、在平面直角坐标系内:如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。

  3、图形平移与点的坐标变化之间的关系:

  (1)左、右平移:

  原图形上的点(x、y),向右平移a个单位(x+a,y);

  原图形上的'点(x、y),向左平移a个单位(x-a,y);

  (2)上、下平移:

  原图形上的点(x、y),向上平移a个单位(x,y+b);

  原图形上的点(x、y),向下平移a个单位(x,y-b)。

  平面直角坐标系

  【规律型:点的坐标】

  1、所需能力:

  1深刻理解平面直角坐标系和点坐标的意义

  2探索各个象限的点和坐标轴上的点其坐标符号规律

  3探索关于平面直角坐标系中有关对称,平移等变化的点的坐标变化规律。

  2、重点: 探索各个象限的点和坐标轴上的点其坐标符号规律

  3、难点: 探索关于平面直角坐标系中有关对称,平移等变化的点的坐标变化规律。

  整式的乘法

  1、 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

  单项式乘法法则在运用时要注意以下几点:

  ①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

  ②相同字母相乘,运用同底数的乘法法则;

  ③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

  ④单项式乘法法则对于三个以上的单项式相乘同样适用;

  ⑤单项式乘以单项式,结果仍是一个单项式。

  2、单项式与多项式相乘

  单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

  单项式与多项式相乘时要注意以下几点:

  ①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

  ②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

  ③在混合运算时,要注意运算顺序。

  3、多项式与多项式相乘

  多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

  多项式与多项式相乘时要注意以下几点:

  ①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;

  ②多项式相乘的结果应注意合并同类项;

  ③对含有同一个字母的一次项 系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。

  乘法公式

  ①(a+b)(a-b)=a2-b2.

  ②(a±b)2=a2±2ab+b2.

  ③(a+b)(a2-ab+b2)=a3+b3.

  ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.

  因式分解

  1、因式分解

  定义:把一个多项式化成几个整式乘积的形式,这种变形叫因式分解。

  即:多项式→几个整式的积

  例:1/3ax+1/3bx=1/3x(a+b)

  因式分解是对多项式进行的一种恒等变形,是整式乘法的逆过程。

  2、因式分解的方法:

  (1)提公因式法:

  ①定义:如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这个变形就是提公因式法分解因式。

  公因式:多项式的各项都含有的相同的因式。公因式可以是一个数字或字母,也可以是一个单项式或多项式。

  系数——取各项系数的最大公约数

  字母——取各项都含有的字母

  指数——取相同字母的最低次幂


标签:多项式相等四边形


相关推荐

最新推荐

关灯